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Abstract

Consider the problem of scheduling a set of jobs to be processed exactly once,
on any machine of a set of unrelated parallel machines, without preemption. Each
job has a due date, weight, and, for each machine, an associated processing time
and sequence-dependent setup time. The objective function considered is to min-
imize the total weighted tardiness of the jobs.

This work proposes a Non-Delayed Relax-and-Cut algorithm, based on a La-
grangean relaxation of a time indexed formulation of the problem. A Lagrangean
heuristic is also developed to obtain approximate solutions.

Using the proposed methods, it is possible to obtain optimal solutions within
reasonable time for some instances with up to 180 jobs and six machines. For
the solutions for which it is not possible to prove optimality, interesting gaps are
obtained.
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1. Introduction

Consider a factory with a set of jobs that have to be processed, without pre-
emption, on any machine of a set of unrelated parallel machines. Each job may
have different processing times, and sequence-dependent setup times, for each
machine.

The problem studied in this work is based on a real case of a particular plant of
a refractory brick factory. It produced more than 8000 products, most of them with
the same production sequence consisting in 5 stages: material input measurement,
blending, conformation, heat treatment and packaging. In each of these stages, the
plant has more than one machine, and most of the products can be processed by
any machine at a particular stage.

In this scenario, the conformation stage is the most critical part of the produc-
tion, and is closely related to the quality of the final product. Moreover, the pro-
duction plan of the plant is made according to the conformation stage’s planning.
After the conformation stage’s planning is defined, the other stages’ planning are
adjusted to meet its objectives. For this reason, most of the planning effort is in-
vested on this stage. This work will focus on the conformation stage, which is
modelled a Scheduling Problem with Unrelated Parallel Machines.

The conformation stage of the studied plant uses seven machines: four identi-
cal, which require manual work, two fully automatic and the last one designed for
a specific kind of bricks. The production plan is made considering the unrelated
parallel machines case with the first six machines and a single machine case for
the seventh, both considering sequence-dependent setup times and due dates. A
more detailed explanation can be found on [32].

Tanaka and Araki [37] propose a Branch-and-Bound algorithm, which uses
a Lagrangean Relaxation to obtain lower bounds, to minimize the total tardiness
on Scheduling Problems with Parallel Identical Machines. It can solve problems
with up to 25 jobs and any number of identical machines. Liaw et al. [22] tackle
the more general problem of minimizing the total weighted tardiness on Schedul-
ing Problems with Unrelated Parallel Machines using lower bounds based on the
assignment problem approximation. It can solve problems with up to 18 jobs and
four machines.

Mokotoff and Chrétienne [26] developed a cutting plane algorithm for the
minimization of the makespan on Scheduling Problems with Unrelated Parallel
Machines. It can solve instances with up to 20 machines and 200 jobs. Mokotoff
[25] uses a very similar approach, combined with pre-processing and other spe-
cific approaches to improve its previous results. It can solve instances with up to
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100 machines and 1000 jobs.
Kedad-Sidhoum et al. [19] proposed lower bounds for the earliness-tardiness

Scheduling Problem with Identical Machines with distinct due dates. Such lower
bounds are assignment-based, generalized from lower bounds proposed for the
single machine case. A time-indexed formulation is then investigated to derive
efficient bounds through column generation or lagrangean relaxation. The gap
between the proposed lower bounds and an upper bound based on a local search
is about 1.5% for instances with up to 90 jobs and six machines.

J. Pereira Lopes and Valério de Carvalho [18] developed a Branch-and-Price
algorithm to minimize the total weighted tardiness on Scheduling Problems with
Unrelated Parallel Machines and Sequence-Dependent Setup Times, availability
dates for the machines and due dates for the jobs. Their method used a “primal-
box" technique and a specific branching variable selection rule to accelerate the
column generation. It can solve instances with up to 150 jobs and 50 machines.

Rocha et al. [33] proposed two Mixed-Integer Programming (MIP) formula-
tions to tackle Scheduling Problems with Unrelated Parallel Machines and Se-
quence Dependent Setup Times: one based on Manne [24] and another based on
Wagner [38]. Ravetti [32] proposed also a Time-Indexed formulation that is ex-
plored in this work. Rocha et al. [33] propose a Branch-and-Bound algorithm
based on constraint programming techniques, that used polynomial methods to
quickly obtain lower-bounds. Ravetti [32]’s approaches can solve instances with
up to 16 jobs and 6 machines, and Rocha et al. [33] can solve instances with up
to 25 jobs and 6 machines, for the minimization of the makespan plus the total
weighted tardiness.

See Li and Yang [21] for a survey on a few recent advances on models, relax-
ations and algorithms for minimization of the total weighted completion time on
non-identical parallel machines.

For more information on time-indexed formulations for scheduling problems,
refer to Sousa and Wolsey [36], Queyranne and Schulz [30], Akker et al. [2] and
Akker et al. [1]. Refer also to Schulz [35] for a discussion about different mathe-
matical formulation approaches to machine scheduling.

The scheduling problem with unrelated parallel machines, due dates and se-
quence-dependent setup times, tackled in this paper, is known to be difficult. It
is also not addressed often in the literature considering unrelated parallel ma-
chines, sequence-dependent setup times and due dates all at once, which make the
problem particularly complex. Moreover, by the time of this research, it was not
possible to find benchmark instances available on the literature even for similar
problems. Thus the instances used were generated using the same algorithm as in
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Rocha et al. [33], considering a harder case than that found in the real case. The
instances generated have six unrelated parallel machines, instead of the four iden-
tical and two unrelated, and admited planning horizons larger than those found in
the real case. The instance generator and all necessary information can be found
at the UFMG Scheduling Group home page.

It is also worth noticing that the difficulty of instances of this problem is not
only measured by its size. In fact, when minimizing the total weighted tardi-
ness, a large number of available machines (with respect to the number of jobs)
usually makes the instance easier, since more jobs can be processed in parallel,
which often leads to less tardy (and thus penalized) jobs. The realistic constraints,
sequence-dependent setup times and due dates, also affect the instance complexity
(see [33]).

In this work, three methods to obtain lower bounds for the problem are de-
tailed. The first method is the linear programming relaxation of Integer Program-
ming formulations of the problem. On Section 2, the linear programming relax-
ation of a time-indexed formulation, proposed by Ravetti [32], is compared with
the linear programming relaxations of two other formulations, based on Wagner
[38]’s and Manne [24]’s works. The second, is a lagrangean relaxation of the
same time-indexed formulation. This method is previously suggested in Ravetti
[32], but only preliminary results are presented. To address convergence issues of
Ravetti [32]’s method, the third method is a novel Non-Delayed Relax-and-Cut
algorithm, which is developed and presented on Section 3.3. On Section 3.4, a
novel Lagrangean Heuristic, also based on Ravetti [32]’s lagrangean relaxation, is
proposed. Finally, on Section 4 the developed algorithms are extensively tested,
and the conclusions are summarized on Section 5.

1.1. Scheduling Problems with Parallel Machines and Sequence-Dependent Setup
Times

Consider a set of unrelated machines M = {1,2, .., |M |} and a set of jobs
J = {1,2, .., |J |}.

The scheduling problems with parallel machines tackled in this work consist in
assigning a machine for each job, and sequencing the set of jobs assigned to each
machine considering the objective of minimizing the total weighted tardiness. Ev-
ery job j ∈J has exactly one associated operation, which can be performed by
any machine m ∈M . Preemption is not allowed.

In the realistic problem studied in this work, positive weights w j are associated
to each job j ∈J . In order to process a job j immediately after a job j′ on
machine m, it is required a positive setup time s j′ jm, that depends both on the
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sequence of jobs j′ ≺ j, job j being scheduled immediatly before another job j′,
and on the machine m ∈M where they are processed; and a positive processing
time p jm, that depends only on machine m ∈M where job j is to be processed.

Define the completion time of job j recursively as C j = C j′ + p jm + s j′ jm,
where C j′ is zero if job j is the first job scheduled or the completion time of the
previous job j′ ≺ j otherwise. The tardiness τ j of each job is calculated as τ j =
max(C j−d j,0), where d j is the due date of job j. Let Cmax be the completion time
of the last job to finish processing (Cmax = max j∈J {C j}). All processing must
be done within a stipulated time horizon T > Cmax. In this work, T = ∞, unless
explicitly told otherwise. It is assumed that all jobs and machines are available at
the first time index. These problems are also known as R|s j j′m, d̃ j|∑w jτ j.

For a review on scheduling problems, notation and classical approaches for
them, refer to Pinedo [29], Lee and Pinedo [20], Blazewicz et al. [4] and Brucker
[5].

Throughout this text, the following notation will be used:
j: A particular job in J .
m: A particular machine in M .
T : The planning horizon. Consider that a planning horizon of size

T have T +1 discrete units of time, that is, jobs can be scheduled
at times t = 0, ...,T .

t: A particular time period, 0≤ t ≤ T .
|S |: The cardinality of set S . That is, the number of jobs or machines,

if S = J or S = M ,
respectively.

p jm: Processing time of job j on machine m.
s j j′m: Setup time needed to process job j′ immediately after job j on

machine m.
δ j j′m: p jm + s j j′m
d j: The due date of job j. The processing of job j has to finish until

time t = d j. Otherwise a penalty proportional to the job’s weight and
its tardiness, w j ∗ τ j, will be considered in the objective
function.

w j: The weight of job j.
C j: The completion time of job j.
Cm: The completion time of the last job processed by machine m.
Cmax: The greatest completion time of all jobs, max j∈J {C j}.
τ j: The tardiness of job j. τ j = max{0,C j−d j}.
M: a very large constant.
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2. Mixed-Integer Programming Formulations

The formulations found on the literature to tackle machine scheduling prob-
lems vary mainly on the way they discretize the assignment of jobs. Usually,
they use start/completion time variables, linear ordering variables, time-indexed
variables and positional date variables (see [35]).

Several formulations for machine scheduling problems are found on the liter-
ature (see Sousa and Wolsey [36], Queyranne and Schulz [30], Akker et al. [2],
Akker et al. [1] and Schulz [35]). However, only two formulations, proposed in
[31], apply for the particular problem addressed in this paper, which considers
unrelated parallel machines, due dates and sequence-dependent setup times: one
based on Wagner [38]’s work and one based on Manne [24]’s work.

While the formulation based on Wagner [38]’s work uses discrete positions
on machines, the formulation based on Manne [24]’s work is based on job prece-
dence. The time-indexed formulation, detailed in Model 1, uses discrete time
positions in a similar way to the formulation based on Wagner [38]’s work, but in-
stead of using positions, which assume variable durations, it uses time units with a
fixed minimum duration (Ravetti [32]). The studied plant works with a 30 minute
time unit.

The time-indexed formulation requires a planning horizon to be specified, that
is, an upper bound on the optimal solution’s makespan. Thus, the proposed im-
plementations of the proposed algorithms based on the time indexed formulation
use the makespan of a known feasible solution as a planning horizon, even though
there’s no guarantee that the optimal solution’s makespan will fit on it. Still, using
this method to estimate the planning horizon is convenient, since the aim of the
algorithms that require this parameter is to obtain lower bounds, and lower bounds
obtained with a subestimated time horizon would still be valid. Moreover, since
the size of the time-indexed formulation grows substantially as the planning hori-
zon grows, it is crucial to keep it conveniently low. In the real case considered,
the planning horizon is set to one month.

3. Lagrangean relaxation

The obtained Linear Programming relaxation bounds of the formulations based
on Wagner’s and Manne’s works are typically too weak to be of practical interest.
Thus, a better alternative would be to use the Linear Programming relaxation of
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Model 1: Time-Indexed Formulation for the Scheduling Problem with Parallel Machines and
Sequence-Dependent Setup-Times, considering the minimization of the Total Weighted Tardi-
nesses. The time horizon considered (T) is the makespan of a known feasible solution.

minimize ∑
j∈J

w jτ j (1a)

subject to

∑
m∈M

T−p jm

∑
t=0

x jmt = 1 ∀ j ∈J (1b)

x jmt +

t+p jm+s j j′m−1

∑
u=t

x j′mu ≤ 1 ∀ j, j′ 6= j ∈J ,∀m ∈M ,∀0≤ t ≤ T − p jm (1c)

τ j ≥ ∑
m∈M

T−p jm

∑
t=0

(t + p jm)x jmt −d j ∀ j ∈J (1d)

τ j ≥ 0 ∀ j ∈J (1e)
x jmt ∈ {0,1} ∀ j ∈J ,∀m ∈M ,∀0≤ t ≤ T − p jm (1f)

Decision Variables:
x jmt : 1 if job j is scheduled at position t of machine m, and 0 otherwise.

Objective Function and Restrictions:
(1a): The objective function is to minimize the sum of weighted tardinesses.
(1b): Each job must be scheduled at one time index of exactly one machine.
(1c): If job j is scheduled at time period t, no other job j′ can be scheduled on the next p jm + s j j′m
periods, which are reserved to the processing of job j and proper machine setup.
(1d): The tardiness of job j is greater than or equals to the difference between its start time plus
its processing time and its due date.
(1e): The tardinesses must be positive.
(1f): The decision variable x is binary.
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Model 2: Lagrangean Relaxation of the Time-Indexed Formulation, considering the minimization
of the Total Weighted Tardinesses, and relaxing the precedence constraints.

minimizeλ ∑
j∈J

w jτ j + ∑
j∈J

∑
j′∈J
j′ 6= j

∑
m∈M

T−p jm

∑
t=0

λ j j′mt(x jmt +

t+p jm+s j j′m−1

∑
u=t

x j′mu−1) (2a)

subject to

∑
m∈M

T−p jm

∑
t=0

x jmt = 1 ∀ j ∈J (2b)

τ j ≥ ∑
m∈M

T−p jm

∑
t=0

(t + p jm)x jmt −d j ∀ j ∈J (2c)

τ j ≥ 0 ∀ j ∈J (2d)

x jmt ∈ {0,1} ∀ j ∈J ,∀m ∈M ,∀0≤ t ≤ T − p jm (2e)

the time-indexed formulation. However, it requires a lot of memory space, since it
uses a very large number of variables and constraints, which limits the size of the
instances that can be tackled with this method. A classical approach to this prob-
lem is to consider the Lagrangean relaxation of the formulation, relaxing enough
constraints to reduce the problem to a more reasonable size.

For more information about Lagrangean relaxations see Held and Karp [15],
Held and Karp [16], Fisher [8], Wolsey [39], Guignard [11] and Guignard [12].

3.1. Relaxing the Precedence Constraints
One possible Lagrangean relaxation is achieved by relaxing the precedence

Constraints (1c). Model 2 details such a Lagrangean relaxation. Another La-
grangean relaxation that relaxes the assignment constraints 1b would also be pos-
sible. However it would still require too much memory space, and is thus uninter-
esting for the pursued purposes.

Note that, once a job-schedule is defined, the tardinesses can be easily calcu-
lated. Since the triplet job, machine and time index are fixed, and the Lagrangean
multipliers are inputs for the problem, it is possible to pre-calculate the costs of
each job scheduling using Equation 3 from Model 3.

To calculate the cost of scheduling a job j at the time index t on a machine m,
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assume that x jmt = 1. The weighted tardinesses can be easily calculated, since it
involves only fixed variables and constants: the time period t, the processing time
p jm of job j at machine m, and its due date d j.

Since x jmt is set to 1, the Lagrangean multipliers associated with jobs that the
job scheduling affects are directly determined from Expression 2a.

Finally, each job j′ 6= j will add λ j′ jmu to the objective function for each time
index u≤ t that would make its processing time overlap the processing time of j,
even if x jmu = 0. That is, for each u = {t− p j′m− s j′ jm . . . t}.

Using these costs, it is possible to rewrite Equations 2a-2e of Model 2 as
Model 3. Note that constraints 2c and 2d model max{0, t + p jm− d j}. Thus,
if only positive tardinesses are considered on the β costs, these constraints may
be discarded.

The resulting subproblem is a multiple choice problem, that can be solved in
O(|M ||J |T ) time by inspection. Since an optimal solution is achived simply
by choosing the smallest β (a job assignment) value for each job, it has the in-
tegrality property (see Ross and Soland [34], Guignard [11], Guignard [12]), so
constraints 1f may also be discarded. For the same reason, it follows that the lower
bounds obtained by such relaxation are exactly the same as those obtained by the
linear programming relaxation (see Guignard [11], Guignard [12] and Wolsey
[39]), and might require more computation time to be obtained, depending on the
convergence of the methods used to solve the Lagrangean Dual. However , it re-
quires much less memory than a linear programming relaxation because all data
can be processed directly, and there’s no need to store numerous variables and
constraints, necessary to create the model, in memory.

3.2. The Subgradient Method
A method to solve the Lagrangean Dual without using a linear programming

system is the Subgradient Method (SM). The proposed implementation follows
the basic SM scheme proposed in Wolsey [39]. The Lagrangean multipliers (λ )
and current lower-bound are initially set with zero values. The upper bound is
defined by the objective function value of a known feasible solution. Then SM
iterations are run until a stopping condition is met. The proposed implementa-
tion stops if all subgradient vector values are null, or either when the lower bound
equals the upper bound or when the step becomes too small (smaller than 0.0001).
On every SM iteration k, a Lagrangean relaxation is solved for the current λ val-
ues. The upper (UB) and lower (LB) bounds are updated, if necessary. Then,
a step size is calculated with Equation 6 considering the new subgradient vector
SG (see Equation 5). Finally, new Lagrangean multipliers λ are calculated with
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Model 3: Pre-processed Lagrangean Relaxation of a Time-Indexed Formulation, considering the
minimization of the Total Weighted Tardinesses, and relaxing the precedence constraints, using β

costs.

β jmt = max{0, t + p jm−d j}w j + ∑
j′∈J
j′ 6= j

(λ j j′mt +
t

∑
u=t−p j′m−s j′ jm+1

λ j′ jmu) (3)

minimizeβ ,λ ∑
j∈J

∑
m∈M

T−p jm

∑
t=0

(β jmtx jmt− ∑
j′∈J
j′ 6= j

λ j j′mt) (4a)

subject to

∑
m∈M

T−p jm

∑
t=0

x jmt = 1 ∀ j ∈J (4b)

Equation 7, for the calculated step size. Every 50 iterations without improvement
of the lower bound, the π value (see Equation 6), initially set to 2, is arbitrarily
halved.

SGk
j j′mt = xk

jmt +

min{t+p jm+s j j′m−1,T−p jm}

∑
u=t

xk
j′mu−1 (5)

stepk =
π ∗ (ρ ∗UB−LB)

||SG||2
(6)

λ
k+1 = max{0,λ k +Step∗SGk} (7)

The subgradients SG, for the Lagrangean relaxation relaxing the Precedence
Constraints, are calculated using Equation 5, and the relaxed problems are solved.

3.3. Non-Delayed Relax-and-Cut
With the Lagrangean relaxation of the precedence constraints of the time-

indexed formulation, a huge number of constraints are relaxed, leading to a huge

10



number of nonzero entries in the sugradient vector SG of the SM. Thus, from
equations 5 and 6, the subgradient norm ||SG||2 value becomes enormous, result-
ing in a very small step and bad convergence.

Relax-and-Cut algorithms, as defined in Lucena [23], attempt to improve La-
grangean bounds by dynamically strengthening relaxations with the introduction
of valid constraints, where strengthening constraints may or may not be explicitly
dualized.

As for any Lagrangean relaxation algorithm, regular Relax-and-Cut algorithms,
like those developed by Gavish [9] and Escudero et al. [7], start with a relaxation
of a given model where a set of complicating constraints is dualized, while the
remaining constraints are kept. The algorithm then proceeds by solving the corre-
sponding Lagrangean Dual Problem. Valid constraints that violate the Lagrangean
Dual Problem solution are then identified and either dualized or kept. Either way,
a new Lagrangean Dual Problem is formulated and solved. This procedure con-
tinues until a stopping criterion is reached.

Since the described method suggests that only some of the available strength-
ening constraints are dualized, it could be interesting to reduce the number of
nonzero entries on the subgradient vector used by the Subgradient Method. How-
ever, since preliminary testing showed that the convergence of the proposed sub-
gradient method can be quite slow, solving potentially many Lagrangean Dual
Problems could be rather expensive.

Alternatively, Lucena [23] proposed modifications to the SM to handle a large
number of relaxed constraints. The idea behind the proposed scheme, called Non-
Delayed Relax-and-Cut, is to dualize constraints on-the-fly, that is, as they become
violated. The main difference between the Non-Delayed Relax-and-Cut and reg-
ular Relax-and-Cut schemes is that the dualization of violated constraints is not
delayed until the Lagrangean Dual is solved. That is, strengthening constraints
are dualized after each Lagrangean relaxation Problem is solved, instead of after
each Lagrangean Dual Problem is solved.

At any iteration k of the SM, the relaxed constraints can be classified into
three sets: those violated by xk, those that have nonzero Lagrangean multipliers
λ k associated with them, and the remaining constraints. Throughout this text
these constraints are referred as Currently Violated Active Set (CAk), Previously
Violated Active Set (PAk) and Currently Inactive Set (CIk). Note that a constraint
may be both on CAk and PAk simultaneously.

If no jobs are scheduled in the time interval considered by a constraint from
equation 1c, its associated subgradient value is negative (-1). If only one job
is scheduled on that interval, the associated subgradient value is null. In these
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cases, the respective constraints are not violated. Violated constraints have more
than one job scheduled on the time interval it considers, and thus have positive
(≥ 1) subgradient values. It follows that constraints in CIk do not contribute to the
Lagrangean costs at the current iteration. However, they play a decisive role in
determining the step size on iteration k, because their squared value is considered.
Moreover, from equation 7, if the current Lagrangean multiplier associated with
such a constraint is null, it will remain null at the end of the iteration, since the
step is a positive real number and the associated subgradient value will be null or
negative. Therefore, in order to deal with a great number of relaxed constraints in
CIk, the subgradient values SGk

j j′mt are arbitrarily set to zero whenever SGk
j j′mt ≤ 0

and λ j j′mt = 0 (see Beasley [3] and Lucena [23]).
The described modification allows problems with a lot of constraints in CIk to

be handled. However, the studied problem also introduces a large number of con-
straints in CAk \PAk, that is, currently violated constraints with null Lagrangean
multipliers associated with them. These inequalities will become effectively du-
alized at the end of the k− th SM iteration. In order to deal with an exceedingly
large number of these constraints, Lucena [23] proposed that only one of those
constraints should be effectively relaxed at each iteration of the SM. Since the
dualization of one of the constraints in CAk \PAk does not affect directly more
than one machine, the proposed implementation relaxes at most one maximal
constraint per machine at each iteration of the Subgradient Method, and the other
constraints have their subgradient entries arbitrarily set to zero, thus becoming, in
effect, constraints in CIk (see Lucena [23]).

In order to choose a maximal constraint to be dualized for a machine m ∈M ,
it is necessary to identify the violated constraints at the current solution. Clearly,
violated constraints have positive subgradient entries. Preliminary tests showed
a “very violated" and penalized constraint, that is, that starts much sooner than it
should and have a large associated λ value, is usually a good choice to be penal-
ized. Thus, following Lucena [23]’s suggestion, for every machine m, jobs j and
j′ and a time index t are chosen such that (t− t ′+ p jm+ s j j′m)∗λ j j′mt is maximal,
considering that job j starts its processing at time index t and job j′ starts its pro-
cessing time at time index t ′. In this case, SG j j′mt is left unchanged, and all other
subgradient entries associated with machine m are set to zero.

It is possible to choose one such maximal constraint in O(nT 2), with a greedy
algorithm. Although this algorithm is polynomial, it may not be efficient if a large
planning horizon is considered.
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3.4. Lagrangean Heuristic
Note that, since jobs scheduled on the first time-index of a machine cannot

be anticipated, solutions of relaxed problems with precedence constraints dual-
ized tend to distribute the jobs on the first time index of the machines and the
Lagrangean multipliers tend to separate pairs of jobs as much as possible (pe-
nalizing violated constraints, that is, pairs of jobs with overlapping processing
time periods). Since the assignment constraints already guarantee that all jobs are
scheduled exactly once, when a lower bound is strong, in this case, it should be
close to feasibility, except for a few jobs that still have overlapping processing
times, because of a machine or sequence misplacement.

Indeed, preliminary tests showed that, for many instances (mainly the easy
ones), the obtained lower bounds proved the optimality of known feasible solu-
tions or provided a very small gap.

Since the jobs scheduled with a large associated β value (see equation 3) have
a greater impact on the objective function, a Lagrangean heuristic to achieves fea-
sibility, without compromising the objective function value, would be to schedule,
in a greedy constructive fashion, the jobs in decreasing order of associated β val-
ues (β jmt such that x jmt = 1 in the solution of the current relaxed problem).

Running a local search might also help, since it guarantees the resulting so-
lution to be a local minimum with respect to the associated neighborhood. In
the proposed implementation, a Variable Neighborhood Search (VNS) heuristic,
proposed by de Paula [6], is used for this purpose. The VNS heuristic takes the
solution obtained by the Lagrangean heuristic as its initial solution. It is well
known that good initial solutions often helps to lead local-search based heuris-
tics to good final solutions, so it is expected that the solutions obtained using this
method will be better than those obtained with a VNS implementation that uses
simpler methods to obtain initial solutions.

In order to minimize the computational overhead introduced by the Lagrangean
heuristic, the proposed implementation of the subgradient method runs the al-
gorithm every time the lower bound improves by 10% since the last run of the
Lagrangean heuristic. Since preliminary tests showed that the β values and the
relaxed problem solutions change relatively little from one iteration to the next,
running the Lagrangean heuristic more frequently on the SM would be too costly
and would lead to the same solution too often. It is expected that the use of a
local search after each run of the Lagrangean heuristic, instead of running the
Lagrangean heuristic more frequently, would lead to better final solutions.

In this text, the proposed implementation of the lagrangean heuristic, that is,
the greedy constructive step that schedules the jobs in order of β values, followed
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by a local search step, performed by de Paula [6]’s VNS implementation, will be
referenced as Improved Lagrangean Heuristic (ILH).

3.5. The VNS Algorithm
This algorithm, proposed by de Paula [6], is a local search based algorithm de-

signed to tackle large instances of Scheduling Problems with Paralellel Machines
and Sequence Dependent Setup Times. It is based on Variable Neighborhood
Search (VNS. See Hansen and Mladenovic [13], Hansen and Mladenovic [14],
Glover and Kochenberger [10]).

The basic VNS scheme applies a shake procedure to the current solution, that
depends on the currently selected neighborhood. de Paula [6]’s implementation
performs k single job movements (moves a random job from its current position to
another, on the same or on another machine), where k is the current neighborhood.
If the best solution found so far is improved on the local search step, neighborhood
1 is selected. The current neighborhood is incremented otherwise.

de Paula [6]’s implementation uses a constructive heuristic based on the Nawaz-
Enscore-Ham (NEH) algorithm [28] to create an initial solution. It sequentially
places each job, in increasing order of due dates, at the best schedule avaiable
on the partial schedule, considering all machines and avaiable positions. How-
ever, any other constructive method, such as heuristics based on those proposed
by Nagano and Moccellin [27] or Hoon Lee and Pinedo [17], would suffice.

The local search used, also proposed by de Paula [6] is based on the union
of a swap and insertion neighborhoods. It efficiently analyzes all pairwise job
swaps (between jobs resident on the same or different machines) and all single job
movements (change of positions also on the same machine or to another machine),
accepting a better solution immediately (first-improvement local search). This
procedure is repeated until no better solution is found.

4. Computational Tests

4.1. Instance Generation
Random instances are used in this work. They are generated with the same

algorithm as in Rocha et al. [33]. Let h be the makespan (Cmax) of a solution
obtained by the Earliest Due Dates constructive heuristic, considering the job
generation order as the job insertion order. The processing times, setup times,
weights and due dates values are generated using a discrete uniform distribution
on the ranges described in Table 1.
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Table 1: Range values for the instance generation
Input data Min Max
Processing time 5 200
Setup time 25 50
Priority 1 3
Due date max j∈J (p j)

2∗h
θ

The setup times also satisfy the triangle inequality (si jm≤ sikm+ pkm+sk jm,∀i 6=
j 6= k ∈J ,m ∈M ).

As a rule of thumb, the greater the θ , the harder the instance is to solve, be-
cause the due dates are tighter and the scheduling system more congested.

For a fixed number of jobs, 40 instances are generated, 20 using θ = 1 and
20 using θ = 5. All instance information and the generator can be found at the
UFMG Scheduling Group home page2.

Since the aim of this work is to tackle large instances of the problem, and
Rocha et al. [33] provides instances with only up to six machines and 25 jobs,
new sets of instances were generated with more jobs. Moreover, even though [33]
provide the algorithm of the instance generator, they do not provide the actual
instances. For that reason, the instances generated with up to 25 jobs might be
different from theirs.

4.2. Experiments and Results
The Lagrangean relaxations of the time indexed formulation, relax-and-cut al-

gorithm and lagrangrean heuristic are implemented in C++ and compiled with the
Intel C++ compiler (icpc) version 10.1.017, using the -fast flag only. The models
of formulations based on Wagner [38]’s and Manne [24]’s works are implemented
in C using the Ilog CPLEX Callable Library. The Time-Indexed formulation is im-
plemented in C++ using the Ilog Concert Technology 2.4. All models are solved
using Ilog CPLEX 10.2. All experiments are performed on a Intel Core 2 Quad
2.5GHz machine with 4GB RAM. All implementations and external processes
(CPLEX, when applicable) are single-threaded.

In the following experiments, instances with 6, 8, 10, 12, 14, 15, 16, 20, 40, 80,
120, 140 and 180 jobs are considered. The number of machines is always fixed
in six unrelated machines to match the real case, even though this is a slightly

2http://www2.dcc.ufmg.br/laboratorios/lapo/wiki/index.php/Scheduling_Instances
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Table 2: Average Lower bounds (LB) obtained with the Linear Programming relaxation of formu-
lations based on [24]’s (MLP) and [38]’s (WLP) works, proposed in [31] and with the time-indexed
formulation (TLP), for problems minimizing the sum of weighted tardinesses. The exact results
were also obtained with the time-indexed formulation.

Size (jobs) Exact MLP WLP TLP
Obj Time (s) LB Time (s) LB Time (s) LB Time (s)

Instances with loose due dates
6 39.9 1.87 0 0.01 0 0.01 34.45 0.29
8 51.25 16.86 0 0 0 0.02 39.3 2.78
10 58.4 56.68 0 0.01 0 0.03 43.35 9.83
12 70.55 143.63 0 0.01 0 0.06 60.2 23.95
14 42.75 386.57 0 0.01 0 0.09 36.9 62.34
16 61.95 991.95 0 0.01 0 0.17 50.95 447.52

Instances with tight due dates
6 217.6 5.5 0 0.01 0 0.02 166.4 0.07
8 433.6 3.02 0 0.01 0 0.02 257.7 0.59
10 586.55 11.09 0 0.01 0 0.04 262.85 1.95
12 718.6 109.3 0 0.01 0 0.1 252.25 5.88
14 706.2 2522.82 0 0.01 0 0.11 264.25 16.54
16 677.25 3570.84 0 0.02 0 0.27 300 34.97

more general scenario, since the real case consists of four identical and two un-
related. A seventh machine is also present in the real case, but it is disconsidered
for our purposes since it realizes only very specific jobs. 40 different instances
are available for each size: 20 with loose due dates and 20 with tight due dates.
Throughout this text, these sets of 40 instances are referenced by their size and a
discrimination between the due date types is made whenever necessary. The same
instances are used in different experiments, when the referenced size is the same.

4.2.1. Experiment 1
In this experiment, the linear relaxation of the considered models is solved for

small instances, with 6, 8, 10, 12, 14 and 16 jobs. Table 2 depicts the results and
compares them with exact results obtained solving the time-indexed formulation
with the CPLEX 11.2 Optimization Package.

The average results presented on Table 2 show that, as expected, the linear pro-
gramming relaxation of the time-indexed formulation is substantially superior to
the others. In fact, the bounds obtained using the formulations based on Wagner’s
and Manne’s works were the obvious null ones. It is worth noting that, although
the obtained bounds are better, the CPU time needed to solve the linear relax-
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Table 3: Average lower bounds for problems minimizing the total weighted tardiness obtained
with the Basic Subgradient Method (BSM) and Non-Delayed Relax-and-Cut (NDRC).

Size (jobs) BSM NDRC
LB Time (s) LB Time (s)

Instances with loose due dates
10 42.05 11.77 44.30 9.69
20 64.95 273.87 67.05 253.00
40 58.80 999.38 58.70 998.42
80 56.60 2886.58 56.60 2886.56

Instances with tight due dates
10 257.35 5.93 267.60 5.23
20 292.40 206.69 309.95 171.76
40 341.15 2983.22 333.10 2212.30
80 322.25 7200.45 320.20 7200.45

ation of the Time-Indexed formulation is often bigger than the CPU time needed
to solve the linear relaxation of the other models, which is expected since the
Time-Indexed formulation yields a bigger number of variables, constraints and
data structures. Detailed results can be found on the UFMG Scheduling Group
home page.

4.2.2. Experiment 2
In this experiment, the Non-Delayed Relax-and-Cut algorithm is compared to

the Basic Subgradient Method, using sets of larger instances, with 10, 20, 40 and
80 jobs. The average results are presented on Table 3.

The average results presented on Table 3 suggest that, although the NDRC
algorithm fixes the problem of the very small step size, convergence is still slow.
In fact, preliminary tests showed that, at first, a lot of iterations of the NDRC
algorithm produce very uninteresting bounds, but after some iterations (which
may take a lot of time) an interesting direction is found and then convergence is
much better. On a few instances, this makes a positive and significant difference,
but the computation times are very close for most of the instances.

4.2.3. Experiment 3
This experiment aims to compare the proposed Improved Lagrangean Heuris-

tic (ILH, see Section 3.4) with [6]’s VNS algorithm in terms of quality and com-
putation time, to highlight their features for their due applications. Since the the
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ILH algorithm provides a quality measure, which is not achieved by the VNS
algorithm, it is expected that its computation time will be much greater. It is
also expected that the quality of the solutions found by the ILH are at least as
good as those found by the VNS algorithm because it uses a similar approach that
considers also lagrangean information. Thus, it is important to notice that these
algorithms may be useful in different situations and are, therefore, complemen-
tary in the sense that both would be interesting in practice. In a scenario where
a solution does not have to be obtained instantly and small improvements on the
solution may result in significant practical advantages, the ILH would be the best
approach. In a scenario, where a solution has to be obtained very quickly and a
quality measure is not so crucial, the pure VNS might be better.

Both algorithms are ran using the instances with 20, 40, 80 ,120, 140 and 180
jobs. The time limit is arbitrarily fixed at two hours. The gaps are calculated
according to Equation 8, where the upper bound (UB) is the solution found by the
heuristic and the lower bound (LB) is obtained using the NDRC algorithm. Since
the pure VNS algorithm do not obtain lower bounds, the gap is calculated using the
lower bound value obtained with the NDRC algorithm separatedly. The average
results are presented on Tables 4 and 5. On both pure VNS implementation, and
the search step of the lagrangean heuristic, iterations are run until the last five
iterations fail to improve the current solution.

gap =
UB−LB

UB
(8)

Table 4: Upper bounds for problems minimizing the total weighted tardiness on instances with
loose due dates obtained with the Improved Lagrangean Heuristic (ILH). The upper bounds ob-
tained using the ILH that are better than those obtained using VNS are in boldface. The gaps in
italic indicate that the optimal solution is found.

VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)

size = 20 jobs
00 0 0 0 0.01 0 0 0.01
01 243 243 0 0.00 243 0 0.14
02 42 49 0.17 0.01 49 0.17 596.90
03 1 56 55.00 0.01 56 55.00 749.74
04 0 0 0 0.00 0 0 0.01
05 222 414 0.86 0.00 410 0.85 897.12
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VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
06 121 200 0.65 0.01 200 0.65 515.20
07 49 98 1.00 0.00 98 1.00 863.31
08 144 144 0 0.00 144 0 0.13
09 0 11 - 0.00 11 - 526.40
10 0 0 0 0.00 0 0 0.02
11 0 0 0 0.01 0 0 0.02
12 36 69 0.92 0.00 36 0 643.56
13 16 16 0 0.00 16 0 0.21
14 46 46 0 0.01 46 0 0.13
15 146 146 0 0.00 146 0 0.12
16 0 0 0 0.01 0 0 0.01
17 109 109 0 0.00 109 0 0.14
18 130 144 0.11 0.00 144 0.11 722.80
19 36 36 0 0.00 36 0 0.20
avg 67.05 89.05 3.09 0.00 87.20 3.04 275.81

size = 40 jobs
00 2 4 1.00 0.02 4 1.00 6599.37
01 128 128 0 0.01 128 0 1.80
02 21 51 1.43 0.02 51 1.43 5878.77
03 0 0 0 0.02 0 0 0.12
04 85 96 0.13 0.01 96 0.13 7200.00
05 0 0 0 0.01 0 0 0.12
06 32 32 0 0.00 32 0 1.94
07 105 105 0 0.00 105 0 2.29
08 170 250 0.47 0.00 250 0.47 7196.78
09 0 8 - 0.02 8 - 0.01
10 60 60 0 0.01 60 0 2.01
11 109 109 0 0.01 109 0 2.57
12 90 90 0 0.00 90 0 1.76
13 114 114 0 0.01 114 0 2.00
14 0 0 0 0.01 0 0 0.13
15 0 0 0 0.01 0 0 0.01
16 221 221 0 0.01 221 0 1.93
17 37 37 0 0.01 37 0 1.92
18 0 0 0 0.02 0 0 0.13
19 0 0 0 0.00 0 0 0.13
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VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
avg 58.70 65.25 0.16 0.01 65.25 0.16 1344.69

size = 80 jobs
00 0 15 - 0.05 15 - 7200.02
01 0 0 0 0.04 0 0 0.92
02 24 24 0 0.03 24 0 20.07
03 14 55 2.93 0.04 51 2.64 7200.04
04 0 0 0 0.03 0 0 0.99
05 45 87 0.93 0.03 87 0.93 7200.02
06 0 0 0 0.03 0 0 0.92
07 0 0 0 0.03 0 0 0.91
08 94 94 0 0.04 94 0 19.54
09 87 87 0 0.04 87 0 19.24
10 57 106 0.86 0.06 106 0.86 7200.02
11 30 30 0 0.04 30 0 20.70
12 0 0 0 0.02 0 0 0.95
13 324 333 0.03 0.06 333 0.03 7200.02
14 15 15 0 0.05 15 0 20.63
15 33 33 0 0.08 33 0 19.24
16 102 172 0.69 0.04 172 0.69 7200.02
17 0 0 0 0.03 0 0 0.89
18 68 88 0.29 0.04 88 0.29 7200.03
19 239 301 0.26 0.03 301 0.26 7200.03
avg 56.60 72.00 0.32 0.04 71.80 0.30 2886.26

size = 120 jobs
00 60 60 0 0.13 60 0 69.21
01 0 0 0 0.13 0 0 2.95
02 339 458 0.35 0.13 441 0.30 7200.13
03 0 0 0 0.11 0 0 3.14
04 73 183 1.51 0.18 183 1.51 7200.06
05 0 0 0 0.10 0 0 2.83
06 0 0 0 0.14 0 0 3.26
07 0 0 0 0.14 0 0 3.17
08 18 18 0 0.10 18 0 70.89
09 0 0 0 0.14 0 0 3.05
10 24 24 0 0.12 24 0 67.20
11 27 27 0 0.13 27 0 71.39

20



VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
12 0 0 0 0.12 0 0 3.17
13 23 23 0 0.10 23 0 68.42
14 0 0 0 0.14 0 0 3.38
15 139 139 0 0.14 139 0 96.49
16 0 0 0 0.15 0 0 8.83
17 87 95 0.09 0.13 95 0.09 7200.12
18 202 370 0.83 0.18 370 0.83 7200.07
19 93 121 0.30 0.12 121 0.30 7200.13
avg 54.25 75.90 0.15 0.13 75.05 0.15 1823.89

size = 140 jobs
00 9 9 0 0.21 9 0 132.65
01 56 81 0.45 0.18 72 0.29 7200.40
02 69 69 0 0.16 69 0 139.68
03 91 115 0.26 0.21 115 0.26 7200.23
04 30 30 0 0.20 30 0 156.11
05 61 78 0.28 0.30 78 0.28 7200.17
06 0 0 0 0.15 0 0 13.55
07 98 143 0.46 0.16 143 0.46 7200.21
08 32 182 4.69 0.20 182 4.69 719.77
09 47 47 0 0.21 47 0 110.00
10 0 0 0 0.19 0 0 11.22
11 4 40 9.00 0.15 40 9.00 7200.15
12 212 238 0.12 0.28 238 0.12 1926.10
13 33 33 0 0.19 33 0 128.79
14 57 180 2.16 0.21 180 2.16 675.77
15 1 60 59.00 0.29 60 59.00 178.19
16 72 84 0.17 0.16 84 0.17 599.33
17 53 53 0 0.20 53 0 140.73
18 0 0 0 0.22 0 0 0.63
19 0 0 0 0.22 0 0 0.53
avg 46.25 72.10 3.83 0.20 71.65 3.82 2046.71

size = 180 jobs
00 0 0 0 0.46 0 0 1.21
01 0 0 0 0.44 0 0 1.10
02 0 0 0 0.38 0 0 1.10
03 0 0 0 0.53 0 0 1.14
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VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
04 12 12 0 0.34 12 0 180.51
05 0 0 0 0.41 0 0 1.18
06 0 0 0 0.43 0 0 1.23
07 213 213 0 0.46 213 0 179.72
08 24 24 0 0.38 24 0 179.72
09 36 36 0 0.44 36 0 178.18
10 0 0 0 0.38 0 0 0.93
11 0 0 0 0.37 0 0 0.84
12 28 28 0 0.48 28 0 179.49
13 0 0 0 0.42 0 0 1.02
14 0 0 0 0.44 0 0 1.09
15 114 140 0.23 0.60 140 0.23 875.52
16 82 282 2.44 0.63 282 2.44 826.89
17 0 0 0 0.56 0 0 1.15
18 35 35 0 0.33 35 0 184.70
19 0 0 0 0.38 0 0 1.05
avg 27.20 38.50 0.13 0.44 38.50 0.13 139.89

Table 5: Upper bounds for problems minimizing the total weighted tardiness on instances with
tight due dates obtained with the Improved Lagrangean Heuristic (ILH). The upper bounds ob-
tained using the ILH that are better than those obtained using VNS are in boldface. The gaps in
italic indicate that the optimal solution is found.

VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)

size = 10 jobs
00 155 457 1.95 0.02 455 1.94 7.72
01 137 364 1.66 0.00 364 1.66 4.93
02 512 854 0.67 0.00 854 0.67 5.15
03 352 611 0.74 0.01 611 0.74 5.35
04 331 669 1.02 0.00 669 1.02 3.21
05 191 682 2.57 0.00 682 2.57 5.46
06 383 849 1.22 0.01 849 1.22 8.97
07 301 712 1.37 0.00 712 1.37 4.64
08 191 572 1.99 0.01 572 1.99 4.25
09 195 424 1.17 0.00 424 1.17 1.21
10 360 691 0.92 0.00 691 0.92 2.93
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VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
11 188 481 1.56 0.00 481 1.56 1.75
12 411 830 1.02 0.00 830 1.02 3.34
13 222 491 1.21 0.00 491 1.21 5.79
14 133 632 3.75 0.00 494 2.71 4.17
15 284 622 1.19 0.00 622 1.19 4.77
16 227 454 1.00 0.00 454 1.00 5.39
17 333 675 1.03 0.00 675 1.03 3.68
18 292 582 0.99 0.00 582 0.99 15.18
19 154 538 2.49 0.00 538 2.49 4.86
avg 267.60 609.50 1.48 0.00 602.50 1.42 5.14

size = 15 jobs
00 425 1305 2.07 0.01 1305 2.07 46.31
01 220 952 3.33 0.00 952 3.33 27.56
02 257 903 2.51 0.00 903 2.51 42.61
03 179 1286 6.18 0.01 925 4.17 79.70
04 388 1481 2.82 0.01 1481 2.82 36.75
05 131 1022 6.80 0.00 1022 6.80 47.75
06 375 1314 2.50 0.00 1314 2.50 26.39
07 297 1215 3.09 0.00 1215 3.09 48.41
08 257 1065 3.14 0.01 955 2.72 29.29
09 312 1014 2.25 0.00 1014 2.25 59.78
10 325 981 2.02 0.00 981 2.02 72.08
11 150 1359 8.06 0.00 1359 8.06 107.90
12 140 728 4.20 0.00 728 4.20 25.72
13 110 635 4.77 0.00 635 4.77 50.07
14 317 1174 2.70 0.00 1174 2.70 35.96
15 353 1191 2.37 0.01 1191 2.37 54.19
16 153 923 5.03 0.00 923 5.03 43.20
17 396 1267 2.20 0.01 1267 2.20 6.95
18 343 1242 2.62 0.01 1242 2.62 34.69
19 387 1351 2.49 0.00 1351 2.49 34.70
avg 275.75 1120.40 3.56 0.00 1096.85 3.44 45.50

size = 20 jobs
00 149 1512 9.15 0.00 1512 9.15 199.41
01 447 1811 3.05 0.00 1811 3.05 158.98
02 271 1704 5.29 0.01 1684 5.21 218.88
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VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
03 383 1904 3.97 0.00 1904 3.97 166.51
04 80 1801 21.51 0.01 1662 19.77 162.35
05 536 2021 2.77 0.00 2000 2.73 237.09
06 525 2155 3.10 0.01 2148 3.09 270.08
07 356 1878 4.28 0.00 1775 3.99 290.97
08 324 2045 5.31 0.00 2001 5.18 77.35
09 282 1475 4.23 0.01 1475 4.23 112.67
10 214 1749 7.17 0.00 1749 7.17 139.02
11 327 1717 4.25 0.00 1717 4.25 208.91
12 283 1566 4.53 0.01 1566 4.53 107.34
13 166 1372 7.27 0.00 1372 7.27 112.24
14 108 1581 13.64 0.00 1581 13.64 91.21
15 246 1463 4.95 0.02 1436 4.84 147.71
16 340 2144 5.31 0.00 2144 5.31 125.51
17 248 1946 6.85 0.01 1946 6.85 130.02
18 392 2118 4.40 0.00 2118 4.40 230.34
19 522 2176 3.17 0.00 2176 3.17 142.69
avg 309.95 1806.90 6.21 0.00 1788.85 6.09 166.46

size = 40 jobs
00 348 5961 16.13 0.03 5835 15.77 2557.14
01 250 4880 18.52 0.02 4837 18.35 1958.05
02 196 5163 25.34 0.03 5163 25.34 2094.71
03 446 8396 17.83 0.03 8396 17.83 2263.85
04 539 6335 10.75 0.02 6335 10.75 2490.65
05 118 4449 36.70 0.02 4449 36.70 2142.60
06 107 5281 48.36 0.03 5281 48.36 1736.59
07 390 5952 14.26 0.02 5915 14.17 2629.80
08 422 5368 11.72 0.01 5368 11.72 2037.68
09 285 5569 18.54 0.04 5569 18.54 1792.25
10 399 5596 13.03 0.02 5596 13.03 2141.55
11 600 6797 10.33 0.02 6771 10.29 2813.48
12 194 5523 27.47 0.02 5447 27.08 1809.16
13 404 5331 12.20 0.01 5008 11.40 2240.56
14 383 6067 14.84 0.04 5969 14.58 2113.09
15 227 6146 26.07 0.02 6146 26.07 1951.00
16 540 7846 13.53 0.01 7846 13.53 2514.88
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VNS ILH
Inst LowerBound Sol Gap Time (s) Sol Gap Time (s)
17 281 5786 19.59 0.02 5786 19.59 2336.94
18 142 4840 33.08 0.02 4840 33.08 1599.74
19 391 7814 18.98 0.01 7814 18.98 2155.16
avg 333.10 5955.00 20.36 0.02 5918.55 20.26 2168.94

size = 80 jobs
00 278 18238 64.60 0.37 18217 64.53 7200.08
01 161 16689 102.66 0.25 16689 102.66 7200.07
02 327 19694 59.23 0.23 19656 59.11 7200.08
03 322 19409 59.28 0.24 19365 59.14 7200.06
04 103 20445 197.50 0.28 20404 197.10 7200.08
05 260 17416 65.98 0.20 17416 65.98 7200.07
06 80 19356 240.95 0.15 19332 240.65 7200.12
07 131 21949 166.55 0.15 21781 165.27 7200.13
08 376 22479 58.78 0.31 22479 58.78 7200.06
09 260 19422 73.70 0.19 19311 73.27 7200.15
10 474 18530 38.09 0.18 18530 38.09 7200.07
11 601 19950 32.19 0.19 19424 31.32 7200.18
12 125 15517 123.14 0.13 15517 123.14 7200.08
13 661 17427 25.36 0.12 17427 25.36 7200.08
14 382 20152 51.75 0.24 20097 51.61 7200.09
15 412 20611 49.03 0.52 20611 49.03 7200.07
16 290 24477 83.40 0.15 24477 83.40 7200.06
17 172 22299 128.65 0.65 22221 128.19 7200.18
18 252 17721 69.32 0.34 17721 69.32 7200.09
19 737 22089 28.97 0.32 21974 28.82 7200.20
avg 320.20 19693.50 85.96 0.26 19632.45 85.74 7200.10

The results presented on Tables 4 and 5 show that the Lagrangean heuristic
obtains good feasible solutions using the solutions obtained by the relaxed prob-
lems. Indeed, it can obtain optimal solutions for many instances, some with up to
180 jobs. It is noteworthy that the lagrangean heuristic is particularly interesting
for the difficult instances, with tight due dates, improving many of the pure VNS
solutions. Moreover, as expected, the obtained solutions are better on average than
the solutions obtained with the pure VNS implementation. Also as expected, sub-
stantially more computation time is needed to obtain lower bounds than to obtain
good feasible solutions.

The gaps obtained for the instances with tigh due dates are high, which indi-
cate either that the proposed heuristics might still be far from the optimal solution,
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or that the obtained lower bounds are poor for this class of instances. Either way,
the Lagrangean heuristic is often able to obtain smaller gaps than the pure VNS
heuristic.

5. Concluding Remarks

In this work, a Time-Indexed formulation is proposed to tackle scheduling
problems with unrelated parallel machines, due dates and sequence-dependent
setup times. Its linear relaxation provides much better bounds than the linear
programming relaxation of the other formulations found on the literature, at the
expense of a great memory usage.

A Lagrangean relaxation is proposed to obtain lower bounds for the problem.
To deal with convergence problems encountered, a Non-Delayed Relax-and-Cut
algorithm is also proposed.

Finally, a lagrangean heuristic is proposed to obtain approximate solutions.
The obtained bounds are particularly good for instances with loose due dates,

proving optimality of known feasible solutions in several cases. For the other
instances, the obtained results are still significant and better than the lower bounds
obtained with the linear relaxation of other formulations found on the literature,
even though they are still high.

As expected, because of the convergence of the methods used to solve the La-
grangean dual, the developed algorithm is often slower than linear programming
approaches. However, the Lagrangean relaxation algorithm requires substantially
less memory to run, and thus can obtain valid bounds even for large instances of
the problem.

The Lagrangean heuristic successfully obtained good approximate feasible so-
lutions. Indeed, it could obtain optimal solutions for many instances, some with
up to 180 jobs. Moreover, the obtained solutions are better on average than the
solutions obtained with the pure VNS implementation. The Lagrangean heuristic
is particularly interesting for difficult instances, with tight due dates, obtaining re-
sults at least as good as those obtained by the pure VNS heuristic, and improving
many of them. The improvement observed, however, is not statistically signifi-
cant.

Even though substantially more computation time is needed to obtain lower
bounds than to obtain good feasible solutions, this extra computational effort is
advantageous for the real case considered because there is a quality improvement
on the solutions, a quality measure and optimality proof (whenever possible). The
company can use up to three days to finish a whole month’s planning, which is still
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much more than the lagrangean heuristic usually needs, even when improved by
the VNS heuristic. Because of its speed advantage, [6]’s implementation, could
still be a good alternative to quickly obtain solutions that are usually good, but
without any measure of quality (e.g.: for a quick analysis of viability of a change
of input data, such as a due date, or weight).

Since the main problem observed is related to memory issues, it is worth notic-
ing that the ranges for random number generation are set to large values (up to
250), to reflect a more realistic situation and to experiment with a more difficult
test case. That leads to a big planning horizon, and thus to huge data structures
in terms of memory usage. The definition of these parameters depend on the ap-
plication. If reduced values can be used for the setup and processing times, the
proposed methods will be able to tackle much larger instances. In the real case
considered, the planning horizon is set to one month, or 1440 time units, with a
30 minutes each. Since a typical planning horizon for an instance with six unre-
lated machines and 180 jobs have about 4500 time units, the proposed methods
are sufficient satisfy the real case’s requirements.

Further work will include: the development of a local search procedure for
the Lagrangean heuristic that uses more information from the relaxed problem so-
lution to guide the search; a deeper study of criteria to choose constraints to be
penalized on the non-delayed relax-and-cut algorithm; research on other strong
valid cuts to be used on a delayed relax-and-cut or branch-and-cut scheme; and
specific methods that do not require a linear programming solver to solve the La-
grangean relaxation with assignment restrictions relaxed. Bound strengthening
techniques, such as relaxation Linearization Technique (RLT), could also be used
on the time-indexed formulation to improve its bounds, allowing for the proposed
Relax-and-Cut algorithm to obtain stronger bounds. The study of Surrogate Con-
straints could also lead to interesting methods. Finally, parallel approaches for the
problem might also be of interest to solve even bigger instances.
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